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Abstract – An error in the currently accepted solution of the problem of the infinite spherical well
is pointed out. The problem is then solved by considering the self-adjointness of the Hamiltonian
operator. In contrast to the currently accepted solution, the radial probability density for finding
the particle at the center of the spherical well is not necessarily zero, in accordance with the
solutions obtained.
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The currently accepted solution of the infinite

spherical well. – The usual way of solving the problem
of the infinite spherical well is recapitulated in the follow-
ing [1–3]. Consider a particle of mass µ being confined in
a well of spherically symmetric potential

V (r) =

{

0, if r ≤ a,
∞, if r > a.

(1)

The time-independent Schrödinger wave equation for the
system is

Ĥψ(r) =

[

− �
2

2µ
▽2 +V (r)

]

ψ(r) = Eψ(r). (2)

In terms of the spherical coordinates (r, θ, φ), the equation
becomes

1

2µr2

[

−�
2 ∂

∂r

(

r2 ∂

∂r

)

+ L̂2

]

ψ + V (r)ψ = Eψ. (3)

Here, the operator L̂
2

is the square of the angular momen-
tum operator L̂,

L̂
2

= −�
2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

. (4)

By the separation of variables, substituting ψ(r, θ, φ) =
R(r)Y (θ, φ) into eq. (3) yields the angular equation

1

Y

{

1

sinθ

∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

sin2θ

∂2Y

∂φ2

}

= −l(l + 1), (5)
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and the radial equation

− �
2

2µr2

d

dr

(

r2 dR

dr

)

+

[

V (r) +
�

2l(l + 1)

2µr2

]

R = ER. (6)

The solutions of eq. (5) are spherical harmonics:

Y m
l (θ, φ) = (−1)(m+|m|)/2

×
√

2l + 1

4π

(l − |m|)!
(l + |m|)!P

m
l (cos θ)ei mφ, (7)

where l = 0, 1, 2, 3, . . . , m = −l, . . . , l in integer steps,
and Pm

l (cos θ) are associated Legendre functions. These
spherical harmonics are common eigenstates of the op-

erators L̂
2

and L̂z, i.e., L̂
2
Y m

l = l(l + 1) �
2 Y m

l and

L̂z Y m
l = m � Y m

l . They are orthonormal,

∫ 2π

φ=0

∫ π

θ=0

[Y m
l (θ, φ)]∗[Y m′

l′ (θ, φ)] sin θ dθ dφ = δll′δmm′ .

(8)
Outside the well V (r) = ∞, thus the radial wave function
R(r) = 0 for r > a. Inside the well V (r) = 0, thus eq. (6)
becomes

d2R

dr2
+

2

r

dR

dr
+

[

k2 − l(l + 1)

r2

]

R = 0, (9)

where k =
√

2µE/� and 0 ≤ r ≤ a. Equation (9) is
the so-called spherical Bessel equation which has the solu-
tions jl(kr) and nl(kr), where jl(kr) is the spherical Bessel
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Table 1: The zeros βln of the spherical Bessel function of
order l, for a few values of l and n.

βln n = 1 n = 2 n = 3 n = 4

l = 0 π 2π 3π 4π
l = 1 4.49341 7.72525 10.9041 14.0662
l = 2 5.76346 9.09501 12.3229 15.5146
l = 3 6.98793 10.4171 13.6980 16.9236
l = 4 8.18256 11.7049 15.0397 18.3013
l = 5 9.35581 12.9665 16.3547 19.6532

Table 2: Eigen-energies Eln, in units of π2
�
2/2µa2, for a few

values of l and n.

Eln n = 1 n = 2 n = 3 n = 4

l = 0 1 4 9 16
l = 1 2.04575 6.04680 12.0471 20.0472
l = 2 3.36563 8.38121 15.3861 24.3883
l = 3 4.94763 10.9950 19.0115 29.0193
l = 4 6.78389 13.8815 22.9180 33.9361
l = 5 8.86877 17.0352 27.1010 39.1349

function of order l and nl(kr) is the spherical Neumann
function of order l [4].

The spherical Neumann functions nl(kr) are discarded,
since they are divergent at the center of the spherical
well r = 0 [nl(r) ≈ r−(l+1) for r ≪ 1] [1–3]. By ap-
plying the conventional boundary condition at r = a, i.e.,
R(a) = 0, the allowed values of k are the roots of the equa-
tion jl(ka) = 0. Let βln be the n-th zero of the spherical
Bessel function of order l. Thus, kln = βln/a, and the
eigen-energies are Eln = �

2β2
ln/2µa2. Few zeros βln of the

spherical Bessel function of order l are presented in ta-
ble 1. Also, few eigen-energies Eln, in units of π2

�
2/2µa2,

are presented in table 2.
Corresponding to each eigen-energy Eln, the eigen-

states are

ψm
l n(r, θ, φ) = Rln(r)Y m

l (θ, φ) =

Alnjl(βln r/a)Y m
l (θ, φ), (10)

where Aln is a normalization constant. Each eigenstate
ψm

l n is normalized in accordance with
∫

|ψm
ln|2r2 sin θ dr dθ dφ =

∫

|Rln|2r2dr

∫

|Y m
l |2 sin θ dθ dφ = 1. (11)

Because Y m
l are orthonormal, Aln is determined by

∫ a

0

|Rln|2r2dr =

∫ a

0

|Alnjl(βlnr/a)|2r2dr = 1. (12)

Because of [Ĥ, L̂
2
] = 0, [Ĥ, L̂z ] = 0 and [L̂

2
, L̂z] = 0, the

three operators Ĥ, L̂
2

and L̂z have common eigenstates for

Fig. 1: (Color online) The radial probability densities of eigen-
states in energy levels E01, E11, E21, E02, E31 and E12,
are shown as a dashed red line, dot-dashed orange line, two-
dots-dashed green line, three-dots-dashed blue line, four-dots-
dashed purple line and five-dots-dashed black line, respectively.
The radial distance r is in units of a.

an eigen-energy. As a consequence of [L̂
2
, L̂z] = 0, each

energy level Eln is (2l + 1)-fold degenerate.

According to eq. (12), for an eigenstate ψm
l n, the ra-

dial probability density for finding the particle at a dis-
tance r from the center of the spherical well is Pln(r) =
|Rln(r)|2r2. For all eigenstates ψm

l n, their radial probabil-
ity densities are zero at both the boundary r = a and the
center r = 0 of the spherical well. The radial probability
densities of eigenstates in the lowest few energy levels are
illustrated in fig. 1. The radial probability densities for
finding the particle at the center and the boundary of the
spherical well are zero.

The currently accepted solution of the infinite spherical
well has been accepted without a doubt. However, it seems
peculiar that the radial probability density of the particle
at the center of the spherical well is zero. The usual reason
to abandon the solution n0(kr) = − cos(kr)/(kr) of eq. (9)
is unconvincing. Although n0(kr) is divergent at r = 0,
r n0(kr) is finite at r = 0, and is square-integrable. There-
fore, n0(kr) is permissible from the viewpoint of physics.
If n0(kr) were not abandoned, then the radial probability
density for finding the particle at the center of the spher-
ical well would not be zero.

Solve the problem by using self-adjointness of

the Hamiltonian operator. – Because the particle is
confined inside the spherical well, the regions outside the
well are irrelevant. Therefore, the wave functions un-
der consideration are defined inside the well only; wave
functions and their derivatives are treated by the one-
sided limit at the boundaries [5–9]. Owing to the self-
adjointness of the Hamiltonian, boundary conditions of
the system are constrained by some requirements. Substi-
tuting R(r) = χ(r)/r into eq. (6) yields

Ĥrχ(r) =

[

− �
2

2µ

d2

dr2
+

�
2l(l + 1)

2µr2

]

χ(r) = E χ(r). (13)
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Table 3: For l = 0, β0n = (2n − 1)π/2. For l > 0, βln are the
zeros of the spherical Bessel function of order l.

βln n = 1 n = 2 n = 3 n = 4

l = 0 π/2 3π/2 5π/2 7π/2
l = 1 4.49341 7.72525 10.9041 14.0662
l = 2 5.76346 9.09501 12.3229 15.5146
l = 3 6.98793 10.4171 13.6980 16.9236
l = 4 8.18256 11.7049 15.0397 18.3013
l = 5 9.35581 12.9665 16.3547 19.6532

Or

d2χ(r)

dr2
+

(

k2 − l(l + 1)

r2

)

χ(r) = 0. (14)

As usual, the operator Ĥr is assumed self-adjoint to de-
termine eigenvalues. Therefore, to ensure that Ĥr is self-
adjoint, solutions χ(r) and χ′(r) of eq. (14) have to satisfy
the following requirement:

χ∗(r)
dχ′(r)

dr
− dχ∗(r)

dr
χ′(r)

∣

∣

∣

a

0
≡ C(r)

∣

∣

∣

a

0
= 0. (15)

The solutions of eq. (14) are r jl(kr) and r nl(kr).
Nonetheless, for l ≥ 1, r nl(kr) are divergent at r = 0,
and they are not square-integrable. Thus, the solutions
r nl(kr) (l ≥ 1) are discarded from the viewpoint of
physics. Consequently, the solutions needed to be con-
sidered reduce to r jl(kr) and r n0(kr). In the following,
we present two cases of solutions of the problem, as an
example.

Case I: Consider the solutions r jl(kr). By the prop-
erty of Bessel function, jl(r) ≈ rl/(2l + 1)!! for r ≪ 1, for
arbitrary χ(r) = r jl(kr) and χ′(r) = r jl(k

′r), C(0) = 0
at r = 0. If the solutions χ(r) = r jl(kr), for any k,
satisfy the boundary condition χ(a) = 0 at r = a, then
such a boundary condition fulfills the requirement given
by eq. (15). The boundary condition χ(a) = a jl(ka) =
0 is equivalent to the conventional boundary condition
R(a) = jl(ka) = 0. Therefore, the eigen-energies and
the eigenstates of this case are just those of the currently
accepted solution as given in the first section.

Case II: Because r n0(kr) is physically feasible, con-
sider the solutions: r n0(kr) for l = 0, and r jl(kr) for
l > 0. For l = 0, C(0) = 0 at r = 0, for arbitrary χ(r) =
r n0(kr) ∼ cos(kr) and χ′(r) = r n0(k

′r) ∼ cos(k′r). Also,
for l > 0, C(0) = 0 at r = 0, for arbitrary χ(r) = r jl(kr)
and χ′(r) = r jl(k

′r). The boundary condition at r = a,
χ(a) = 0, fulfills the requirement given by eq. (15).

By imposing this boundary condition at r = a, for
l = 0, the allowed values of k are k0n = (2n − 1)π/2a,
where n = 1, 2, 3, . . . . Here, the first subscript 0 in k0n

indicates l = 0. Thus, the eigen-energies are E0n =
�

2k2
0n/2µa2. Corresponding to each eigen-energy E0n, the

Table 4: Eigen-energies Eln in units of π2
�
2/2µa2.

Eln n = 1 n = 2 n = 3 n = 4

l = 0 1/4 9/4 25/4 49/4
l = 1 2.04575 6.04680 12.0471 20.0472
l = 2 3.36563 8.38121 15.3861 24.3883
l = 3 4.94763 10.9950 19.0115 29.0193
l = 4 6.78389 13.8815 22.9180 33.9361
l = 5 8.86877 17.0352 27.1010 39.1349

Fig. 2: (Color online) The radial probability densities of eigen-
states in energy levels E01, E11, E02, E21, E31 and E12,
are shown as a dashed red line, dot-dashed orange line, two-
dots-dashed green line, three-dots-dashed blue line, four-dots-
dashed purple line and five-dots-dashed black line, respectively.
The radial distance r is in units of a.

eigenstate is

ψ0
0 n(r, θ, φ) = R0n(r)Y 0

0 (θ, φ) =

A0n n0(k0n r)Y 0
0 (θ, φ), (16)

where A0n is a normalization constant. For l > 0, with
this boundary condition, the allowed values of k are the
roots of the equation jl(ka) = 0. Thus, the eigenstates
ψm

l n are those of the currently accepted solution, eq. (10).
Few values of βln and Eln are presented in tables 3 and 4,
respectively. The radial probability densities of eigen-
states in the lowest few energy levels are illustrated in
fig. 2. For the eigenstates ψ0

0n, their radial probability
densities P0n(r) are not zero at the center of the spherical
well. Thus, the radial probability density for finding the
particle at the center of the spherical well is not zero.

It should be noted that there are many more boundary
conditions, other than the conventional one, satisfying the
requirement given by eq. (15) [10]. Therefore, there exist
many different solutions corresponding to different bound-
ary conditions. The only solution presented in Case II is
to point out an error in the currently accepted solution
which is in general largely unrecognized.

Conclusion . – It seems peculiar that the radial prob-
ability density of the particle at the center of the spherical
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well is zero, according to the currently accepted solution.
The peculiarity is due to the abandoning of the spherical
Neumann function n0(kr). The reason to abandon n0(kr)
is not incontrovertible from the viewpoint of physics. Ad-
ditional solutions are obtained by considering the physi-
cally feasible solution r n0(kr). For the additional solu-
tions, the radial probability density of the particle at the
center of the spherical well is not necessarily zero. The
peculiarity of the currently accepted solution is resolved.

There is an infinity of possible boundary conditions with
quite different physical characteristics [7]. Some of them
will preserve time-reversibility, some parity and some en-
ergy positivity. States stationary in one solution are non-
stationary in others. The energy spectra are varying in a
non-linear way. As there is only a single reality, only one
of these many solutions can be the correct one. To find it
by sound physical arguments is a major open problem.
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